3.17.57 \(\int \frac {1}{(a+b x)^{3/2} (c+d x)^{3/4}} \, dx\) [1657]

Optimal. Leaf size=111 \[ -\frac {2 \sqrt [4]{c+d x}}{(b c-a d) \sqrt {a+b x}}-\frac {2 \sqrt {-\frac {d (a+b x)}{b c-a d}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{b c-a d}}\right )\right |-1\right )}{\sqrt [4]{b} (b c-a d)^{3/4} \sqrt {a+b x}} \]

[Out]

-2*(d*x+c)^(1/4)/(-a*d+b*c)/(b*x+a)^(1/2)-2*EllipticF(b^(1/4)*(d*x+c)^(1/4)/(-a*d+b*c)^(1/4),I)*(-d*(b*x+a)/(-
a*d+b*c))^(1/2)/b^(1/4)/(-a*d+b*c)^(3/4)/(b*x+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 111, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {53, 65, 230, 227} \begin {gather*} -\frac {2 \sqrt {-\frac {d (a+b x)}{b c-a d}} F\left (\left .\text {ArcSin}\left (\frac {\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{b c-a d}}\right )\right |-1\right )}{\sqrt [4]{b} \sqrt {a+b x} (b c-a d)^{3/4}}-\frac {2 \sqrt [4]{c+d x}}{\sqrt {a+b x} (b c-a d)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((a + b*x)^(3/2)*(c + d*x)^(3/4)),x]

[Out]

(-2*(c + d*x)^(1/4))/((b*c - a*d)*Sqrt[a + b*x]) - (2*Sqrt[-((d*(a + b*x))/(b*c - a*d))]*EllipticF[ArcSin[(b^(
1/4)*(c + d*x)^(1/4))/(b*c - a*d)^(1/4)], -1])/(b^(1/4)*(b*c - a*d)^(3/4)*Sqrt[a + b*x])

Rule 53

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 227

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[Rt[-b, 4]*(x/Rt[a, 4])], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 230

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Dist[Sqrt[1 + b*(x^4/a)]/Sqrt[a + b*x^4], Int[1/Sqrt[1 + b*(x^4/
a)], x], x] /; FreeQ[{a, b}, x] && NegQ[b/a] &&  !GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {1}{(a+b x)^{3/2} (c+d x)^{3/4}} \, dx &=-\frac {2 \sqrt [4]{c+d x}}{(b c-a d) \sqrt {a+b x}}-\frac {d \int \frac {1}{\sqrt {a+b x} (c+d x)^{3/4}} \, dx}{2 (b c-a d)}\\ &=-\frac {2 \sqrt [4]{c+d x}}{(b c-a d) \sqrt {a+b x}}-\frac {2 \text {Subst}\left (\int \frac {1}{\sqrt {a-\frac {b c}{d}+\frac {b x^4}{d}}} \, dx,x,\sqrt [4]{c+d x}\right )}{b c-a d}\\ &=-\frac {2 \sqrt [4]{c+d x}}{(b c-a d) \sqrt {a+b x}}-\frac {\left (2 \sqrt {\frac {d (a+b x)}{-b c+a d}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {b x^4}{\left (a-\frac {b c}{d}\right ) d}}} \, dx,x,\sqrt [4]{c+d x}\right )}{(b c-a d) \sqrt {a+b x}}\\ &=-\frac {2 \sqrt [4]{c+d x}}{(b c-a d) \sqrt {a+b x}}-\frac {2 \sqrt {-\frac {d (a+b x)}{b c-a d}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{b c-a d}}\right )\right |-1\right )}{\sqrt [4]{b} (b c-a d)^{3/4} \sqrt {a+b x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.03, size = 71, normalized size = 0.64 \begin {gather*} -\frac {2 \left (\frac {b (c+d x)}{b c-a d}\right )^{3/4} \, _2F_1\left (-\frac {1}{2},\frac {3}{4};\frac {1}{2};\frac {d (a+b x)}{-b c+a d}\right )}{b \sqrt {a+b x} (c+d x)^{3/4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*x)^(3/2)*(c + d*x)^(3/4)),x]

[Out]

(-2*((b*(c + d*x))/(b*c - a*d))^(3/4)*Hypergeometric2F1[-1/2, 3/4, 1/2, (d*(a + b*x))/(-(b*c) + a*d)])/(b*Sqrt
[a + b*x]*(c + d*x)^(3/4))

________________________________________________________________________________________

Maple [F]
time = 0.08, size = 0, normalized size = 0.00 \[\int \frac {1}{\left (b x +a \right )^{\frac {3}{2}} \left (d x +c \right )^{\frac {3}{4}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x+a)^(3/2)/(d*x+c)^(3/4),x)

[Out]

int(1/(b*x+a)^(3/2)/(d*x+c)^(3/4),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(3/2)/(d*x+c)^(3/4),x, algorithm="maxima")

[Out]

integrate(1/((b*x + a)^(3/2)*(d*x + c)^(3/4)), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(3/2)/(d*x+c)^(3/4),x, algorithm="fricas")

[Out]

integral(sqrt(b*x + a)*(d*x + c)^(1/4)/(b^2*d*x^3 + a^2*c + (b^2*c + 2*a*b*d)*x^2 + (2*a*b*c + a^2*d)*x), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (a + b x\right )^{\frac {3}{2}} \left (c + d x\right )^{\frac {3}{4}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)**(3/2)/(d*x+c)**(3/4),x)

[Out]

Integral(1/((a + b*x)**(3/2)*(c + d*x)**(3/4)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(3/2)/(d*x+c)^(3/4),x, algorithm="giac")

[Out]

integrate(1/((b*x + a)^(3/2)*(d*x + c)^(3/4)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\left (a+b\,x\right )}^{3/2}\,{\left (c+d\,x\right )}^{3/4}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b*x)^(3/2)*(c + d*x)^(3/4)),x)

[Out]

int(1/((a + b*x)^(3/2)*(c + d*x)^(3/4)), x)

________________________________________________________________________________________